New series expansion data for surface and bulk resistivity and conductivity in two-dimensional percolation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1996 J. Phys. A: Math. Gen. 29 L143
(http://iopscience.iop.org/0305-4470/29/6/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

LETTER TO THE EDITOR

New series expansion data for surface and bulk resistivity and conductivity in two-dimensional percolation

J W Essam \dagger, T Lookman \ddagger and K De’Bell§
\dagger Department of Mathematics, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
\ddagger Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B9
§ Department of Physics, Trent University, Peterborough, Ontario, Canada K9J 7B8

Received 2 June 1995, in final form 17 October 1995

Abstract

Low-density series expansions are obtained for random resistor networks. The expansions are obtained on the square lattice to order 18 and on the triangular lattice to order 14. Bulk and surface expansions are given for both resistive and conductive susceptibilities. The balance of the evidence obtained from analysing these series is in favour of the value $\zeta_{R}=1.32 \pm 0.02$ for the critical exponent of the resistance scale and supports the existence of only a single such scale for bulk and surface susceptibilities. This value is in agreement with earlier Monte Carlo work.

Previous series expansion work on two-dimensional random resistor networks was for bond percolation on the square lattice. Fisch and Harris [1] obtained the low-density expansion of the resistive and conductive susceptiblities to order p^{10} and this was subsequently extended to order p^{16} by Essam and Bhatti [2]. The resistive susceptibility is defined by

$$
\begin{equation*}
\chi_{\mathrm{R}}(p)=\sum_{r \neq \mathbf{0}} R(\boldsymbol{r}, p) \tag{1}
\end{equation*}
$$

where each lattice bond has probability p of being a unit conductor and $1-p$ of being an insulator. $R(\boldsymbol{r}, p)$ is the expected resistance between some lattice site taken as the origin and a site with position vector r, given that both sites belong to the same finite cluster. The conductive susceptibility, $\chi_{\mathrm{C}}(p)$, is similarly defined with the resistance, $R(\boldsymbol{r}, p)$, replaced by its reciprocal. Here we extend the square lattice results to order p^{18} and obtain a completely new expansion for the triangular lattice to order p^{14}. Expansions are also obtained for the resistive and conductive susceptibilties, $\chi_{\mathrm{R} 1}(p)$ and $\chi_{\mathrm{C} 1}(p)$, of the corresponding semi-infinite lattices when the origin is chosen to be a point in the surface. The method used is described in [3] for the bulk and is easily extended to the surface problem. The calculation, including the generation of the non-nodal graph list, was completely automated and the number of terms obtained was limited only by availabilty of computer power. The series coefficients are given in the appendix.

Replacing $R(\boldsymbol{r}, p)$ by $P(\boldsymbol{r}, p)$, the probability of a conducting path to r, in (1) gives the mean cluster size functions $S(p)$ and $S_{1}(p)$, which are the expected number of sites connected to the origin in the bulk and semi-infinite lattices, respectively. On approaching
the critical probablity p_{c}, the bulk cluster size and resistive susceptibilities are normally assumed to diverge with critical exponents γ and γ_{R} with corresponding surface exponents γ_{1} and $\gamma_{\mathrm{R} 1}$. The values of p_{c} are known for the two lattices considered: p_{c} (square) $=\frac{1}{2}$ and p_{c} (triangular) $=2 \sin (\pi / 18)$. Normalizing the susceptibilities by dividing by the corresponding mean size gives the resistance and conductance scales denoted by $L_{\mathrm{R}}(p)$, $L_{\mathrm{C}}(p), L_{\mathrm{R} 1}(p)$ and $L_{\mathrm{C} 1}(p)$. Thus the resistance scale is

$$
\begin{equation*}
L_{\mathrm{R}}(p) \equiv \frac{\chi_{\mathrm{R}}(p)}{S(p)} \sim\left(p_{\mathrm{c}}-p\right)^{-\zeta_{\mathrm{R}}} \tag{2}
\end{equation*}
$$

which diverges with exponent $\zeta_{R}=\gamma_{R}-\gamma$. The conductance scale, $L_{C}(p)$, tends to zero at the critical point and has negative exponent $\zeta_{\mathrm{C}}=\gamma_{\mathrm{C}}-\gamma$ which is normally assumed to have magnitude ζ_{R} [1], this being in agreement with our results below. We also find that the scales for the surface problem have the same exponents as for the bulk properties. This is to be expected since there can be no surface transition and the only scales which become singular at the transition are those of the bulk (i.e. there is only one connectedness length exponent v at an 'ordinary' transition). Assuming the above relations between the scale exponents, we are able to obtain four separate estimates of ζ_{R} for each of the two lattices.

Bhatti and Essam [3] analysed their 16 term $\chi_{R}(p)$ series for the square lattice by the methods of Baker and Hunter (BH) [4] and the M2 method of Adler et al [5, 6] and found $\zeta_{\mathrm{R}}=1.26 \pm 0.02$ which supported the Alexander-Orbach (AO) conjecture [7] $\zeta_{\mathrm{R}}=\frac{1}{2} \Delta$, where Δ is the critical exponent for the scale of the cluster size distribution. (In two dimensions $\Delta=\frac{91}{36}$ [8] which gives $\zeta_{\mathrm{R}}=1.2638 \dot{8}$.) The large error in their estimate $\zeta_{\mathrm{C}}=-1.3 \pm 0.1$ reflected the relatively poor convergence of the χ_{C} series.

The result of den Nijs [8] that $\gamma=2 \frac{7}{18}$ is normally accepted as exact and when this was first discovered there was an inconsistency with some series expansion estimates based on DLog Padé approximants. This was resolved by Adler et al [6] who pointed out the importance of allowing for corrections to scaling in the analysis of percolation series. Thus the scaling form of $\chi_{\mathrm{R}}(p)$ is just the leading term in an asymptotic expansion:

$$
\begin{equation*}
\chi_{\mathrm{R}}(p) \cong A\left(p_{\mathrm{c}}-p\right)^{-\gamma_{\mathrm{R}}}\left(1+\sum_{i=1}^{\infty} B_{i}\left(p_{\mathrm{c}}-p\right)^{\Delta_{i}}\right) \tag{3}
\end{equation*}
$$

The presence of such correction terms slows down the convergence of the usual DLog Padé approximant technique and the BH and M 2 methods combat this by first transforming the expansion of $\chi_{\mathrm{R}}(p)$. This improves the accuracy of the leading exponent γ_{R} and the leading correction exponent Δ_{1} can often be estimated. The value obtained for Δ_{1} may only be an effective value since it can be strongly influenced by higher order corrections. If it were the true value then Adler's assumption [9] that its value is the same for the mean size and both susceptibility series would be reasonable. Making this assumption she found, by reanalysing the series of Fisch and Harris [1], that $\zeta_{R}=1.31 \pm 0.20$ where the large tolerance arises by allowing values of Δ_{1} in the range 1.1-1.4.

The result of Essam and Bhatti [2] is in conflict with several accurate computer simulations [10-13] which rejected the Alexander-Orbach conjecture. In particular, Normand et al have estimated ζ_{R} using extensive Monte Carlo simulations of both bond and site percolation on a special purpose computer [14]. In their initial analysis, they estimate the leading order exponent from a $\log -\log$ plot for both site and bond percolation. Although the site and bond lines do not become parallel, as expected in the asymptotic limit, Normand et al were able to assign upper and lower bounds, $1.28>\zeta_{\mathrm{R}}>1.31$. These bounds would exclude both the Alexander-Orbach conjecture and the alternative conjecture
$\zeta_{R}=v=\frac{4}{3}$ [15]. To improve the precision of their estimate, Normand et al also included a non-analytic correction to the scaling term in the analysis and chose the value of the leading exponent and correction exponent which appeared to give the best approach to the expected asymptotic behaviour for both the bond and site percolation results. This led to an estimate of $\zeta_{\mathrm{R}}=1.299 \pm 0.002$. In interpreting the increased precision of the estimate obtained in this way, it must be remembered that universality of the correction to the scaling exponent is insisted on; however, here again this exponent may be regarded as an effective exponent both because higher order correction terms are not included and because the analysis is effectively a nonlinear fit to four unknowns for each set of data.

Adler et al [5] considered the divided series $\chi_{\mathrm{R}}(p) \div \chi_{\mathrm{C}}(p)$ in the hope that the unknown non-analytic corrections to scaling would be swamped by the induced analytic corrections. (The divided series $A(p) \div B(p)$ is the series having coefficients which are the ratios of those in the expansions of $A(p)$ and $B(p)$.) In this way they obtained values of ζ_{R} ranging between 1.23 and 1.29 . The other possiblity they considered was the presence of logarithmic corrections. The choice of exponent for the logarithm which made $\zeta_{C}=-\zeta_{R}$ gave $\zeta_{R}=1.31 \pm 0.02$.

In the analysis of our new data we have applied three different methods to each series, the BH and M2 methods and also the method M1 described by Adler et al [5]. The last method treats the leading exponent as an independent variable and determines the value which minimizes the dispersion of the Δ_{1} estimates. For each lattice and susceptiblity type we have considered four different series. Bhatti and Essam originally analysed $\chi_{\mathrm{R}}(p) / p$ since the power expansion had no constant term. Here we find that introducing a constant term by using $1+\chi_{\mathrm{R}}(p)$ can make a significant difference to the critical exponent estimate in some cases. In particular the BH estimate of $\gamma_{R}-\gamma$ changes from 1.27 ± 0.05, which agreed with the AO conjecture in [3], to 1.31 ± 0.04 which is in line with the Monte Carlo estimates. In both cases the exact value of γ [8] ($\gamma_{1}[16]$) is subtracted from the estimate of $\gamma_{R}\left(\gamma_{R 1}\right)$. We have also used the series for the derivative and the 'divided series' defined above, the latter gives gives a direct estimate of ζ_{R}. The results are listed in tables $1-4$.

Although all three methods for a given expansion normally give estimates of Δ_{1} which are consistent with one another, it can be seen that there is a wide variation in the value of

Table 1. Estimates of ζ_{R} from bulk resistive susceptibility series.

		Square		Triangular	
		$\gamma_{R}-\gamma$	Δ_{1}	$\gamma_{R}-\gamma$	Δ_{1}
$1+\chi_{R}$	M2	1.31 ± 0.02	1.75 ± 0.01	1.35 ± 0.02	1.6 ± 0.1
	M1	1.32 ± 0.01	2.1 ± 0.1	1.35 ± 0.01	1.6 ± 0.2
	BH	1.31 ± 0.04	1.7 ± 0.1	1.30 ± 0.05	1.2 ± 0.5
χ_{R} / p	M2	1.31 ± 0.02	0.9 ± 0.1	1.29 ± 0.03	1 ± 0.2
	M1	1.30 ± 0.03	0.9 ± 0.3	1.31 ± 0.05	0.6 ± 0.4
	BH	1.27 ± 0.05	1.3 ± 0.2	1.29 ± 0.04	1.2 ± 0.4
$\mathrm{d} \chi_{\mathrm{R}} / \mathrm{d} p$	M2	1.31 ± 0.01	1.7 ± 0.2	1.34 ± 0.02	1.5 ± 0.2
	M1	1.32 ± 0.01	2.4 ± 0.7	1.35 ± 0.02	1.8 ± 0.2
	BH	1.32 ± 0.02	1.7 ± 0.1	1.32 ± 0.05	1.3 ± 0.1
$\chi_{\mathrm{R}} \div S$	M2	1.27 ± 0.05	1.1 ± 0.1	1.33 ± 0.01	0.7 ± 0.1
	M1	1.3 ± 0.1	1.0 ± 0.5	1.32 ± 0.01	0.75 ± 0.10
	BH	1.34 ± 0.13	0.68 ± 0.01	1.32 ± 0.10	0.7 ± 0.1

Table 2. Estimates of ζ_{R} from surface resistive susceptibility series.

		Square			Triangular	
		$\gamma_{\mathrm{R} 1}-\gamma_{1}$	Δ_{1}		$\gamma_{\mathrm{R} 1}-\gamma_{1}$	Δ_{1}
$+\chi_{\mathrm{R} 1}$	M2	1.26 ± 0.01	1.9 ± 0.2		1.315 ± 0.005	1.74 ± 0.01
	M1	1.27 ± 0.02	\dagger		1.32 ± 0.01	2.0 ± 0.2
	BH	1.28 ± 0.02	$*$		1.34 ± 0.05	1.6 ± 0.1
	M2	1.24 ± 0.18	1.7 ± 1.3		1.29 ± 0.02	1.0 ± 0.2
	M1	1.26 ± 0.03	1.1 ± 0.1		1.29 ± 0.02	1.0 ± 0.2
	BH	1.29 ± 0.05	1.1 ± 0.1		1.27 ± 0.08	1.0 ± 0.3
	M2	1.27 ± 0.01	2.4 ± 0.1		1.31 ± 0.01	1.62 ± 0.02
$\mathrm{~d}_{\mathrm{R} 1} / \mathrm{d} p$	M1	1.265 ± 0.005	2.4 ± 0.4	1.31 ± 0.01	1.65 ± 0.07	
	BH	1.28 ± 0.02	2.6 ± 0.2		1.33 ± 0.03	1.7 ± 0.2
	M2	1.3 ± 0.1	0.7 ± 0.3		1.30 ± 0.02	0.9 ± 0.1
$\chi_{\mathrm{R} 1} \div S_{1}$	M1	\ddagger	\ddagger	\ddagger		1.33 ± 0.02
	BH	1.3 ± 0.1	0.7 ± 0.1		1.30 ± 0.06	0.8 ± 0.1

Table 3. Estimates of ζ_{R} from bulk conductive susceptibility series.

		Square		Triangular	
		$\gamma-\gamma_{\mathrm{C}}$	Δ_{1}	$\gamma-\gamma_{\mathrm{C}}$	Δ_{1}
$1+\chi_{C}$	M2	1.37 ± 0.02	2.2 ± 0.3	1.36 ± 0.02	1.5 ± 0.1
	M1	1.38 ± 0.01	\dagger	1.353 ± 0.004	2.1 ± 0.1
	BH	1.33 ± 0.07	*	1.29 ± 0.06	*
χ_{C} / p	M2	1.37 ± 0.08	1.5 ± 0.5	1.36 ± 0.05	1.8 ± 0.7
	M1	\ddagger	\ddagger	1.34 ± 0.15	0.6 ± 0.3
	BH	1.31 ± 0.09	*	1.33 ± 0.08	*
$\mathrm{d} \chi_{\mathrm{C}} / \mathrm{d} p$	M2	1.37 ± 0.08	1.5 ± 0.5	1.37 ± 0.06	2.0 ± 1.0
	M1	1.43 ± 0.04	\dagger	1.41 ± 0.03	\dagger
	BH	1.31 ± 0.09	*	1.31 ± 0.03	*
$\chi_{\text {C }} \div S$	M2	1.27 ± 0.02	1.4 ± 0.1	1.27 ± 0.01	1.6 ± 0.1
	M1	1.27 ± 0.01	1.4 ± 0.1	1.25 ± 0.01	1.6 ± 0.3
	BH	1.24 ± 0.03	1.6 ± 0.5	1.25 ± 0.02	1.7 ± 0.5

Δ_{1} from series to series. In most cases this exponent either has a value close to 1 (analytic correction) or close to 1.7 . A notable exception to this is for the divided series of the resistive susceptiblity where $\Delta_{1}<1$. We therefore suppose that our results only estimate an effective correction to scaling.

In the tables an asterisk by the Baker-Hunter estimate means that no satisfactory estimate of Δ_{1} could be obtained due to the widespread appearance of defective approximants. A dagger in an M2 row indicates that the estimate was based on the position of a discontinuity in the Δ_{1} against γ curve which makes the assignment of a precise value to Δ_{1} impossible. Such discontinuities occur naturally in test series and the evidence from such series is that the correct value of γ is indicated. A double dagger in an M2 row indicates that there was a continuous variation of γ with Δ_{1} with no obvious converged region so that neither exponent is estimated.

According to universality and scaling, all of the leading exponent estimates in the tables

Table 4. Estimates of ζ_{R} from surface conductive susceptibility series.

		Square		Triangular	
		$\gamma_{1}-\gamma_{\mathrm{C} 1}$	Δ_{1}	$\gamma_{1}-\gamma_{\mathrm{C} 1}$	Δ_{1}
$1+\chi_{\text {C1 }}$	M2	1.40 ± 0.01	1.7 ± 0.2	1.39 ± 0.02	1.41 ± 0.02
	M1	1.38 ± 0.01	\dagger	1.382 ± 0.002	1.7 ± 0.1
	BH	*	*	1.32 ± 0.06	*
$\chi_{\mathrm{C} 1} / p$	M2	1.388 ± 0.005	2.0 ± 1.0	1.368 ± 0.003	1.55 ± 0.05
	M1	1.39 ± 0.01	\dagger	1.378 ± 0.01	1.3 ± 0.2
	BH	*	*	1.29 ± 0.06	*
$\chi_{\chi}{ }_{\text {C1 }} / \mathrm{d} p$	M2	1.4 ± 0.1	2.3 ± 0.7	1.37 ± 0.04	0.1 ± 0.4
	M1	\ddagger	\ddagger	\ddagger	\ddagger
	BH	*	*	1.34 ± 0.05	*
$\chi_{\mathrm{C} 1} \div S_{1}$	M2	1.24 ± 0.02	1.7 ± 0.1	1.25 ± 0.01	1.75 ± 0.05
	M1	1.25 ± 0.01	1.6 ± 0.1	1.24 ± 0.01	1.9 ± 0.2
	BH	1.23 ± 0.03	1.8 ± 0.2	1.245 ± 0.015	1.7 ± 1.0

should be the same and equal to ζ_{R}. The bulk resistive susceptibility estimates for both the square and triangular lattices (table 1) are consistent with 1.32 ± 0.02 in agreement with universality and with the Monte Carlo estimates referred to above. This result also covers the surface resistive susceptibility of the triangular lattice (table 2) in agreement with there being a single resistive scaling length for bulk and surface properties. However, the corresponding results for the square lattice are in better agreement with the AO conjecture (but violating universality) and there are in fact some very well converged results which support this hypothesis. However, assuming universality, the balance of the evidence favours the higher Monte Carlo result.

It is possible to refine the consistency of the estimates somewhat by insisting that certain conditions which are true in the asymptotic limit be met. For example, we may insist that both the leading exponent and the coefficient of the leading order term are the same when obtained from both χ_{R} / p and $1+\chi_{\mathrm{R}}$. If the estimates of coefficient against exponent obtained from each Padé approximant in the Baker-Hunter analysis for the two series are plotted on the same graph the crossing point provides an estimate which satisfies the condition. The difficulty with such approaches is similar to the difficulty with insisting on the universality of the correction to the scaling exponent, as was done in some of the earlier studies described above; that is, the coefficient has to be regarded as only an effective value for any analysis based on a finite number of terms. Consequently, any increased precision in the estimates obtained for a given pair of series may be an artefact of the condition imposed. It is therefore preferable to consider the full range of the central estimates of the exponent obtained for the various series and methods of analysis shown in the table and to take the variation in these central estimates as a reasonable indicator of the accuracy of the results.

Turning now to the conductive susceptibility, we notice a marked deterioration in the quality of the data. In particular, it is very often impossible to give an effective correction to the scaling exponent which suggests that our assumed form (3) is not a good representation of the conductive susceptibility functions. The resulting larger error bars attached to these exponents usually allow consistency with the scaling hypothesis $\gamma_{R}-\gamma=\gamma-\gamma_{C}$ [4] although there are some well converged exceptions. In particular, if one wanted to make
a case for believing the AO conjecture then the data for $\chi_{\mathrm{C}} \div S$ and $\chi_{\mathrm{C} 1} \div S_{1}$ would be excellent ammunition. However, again, our data suggest that the spread in the central estimates obtained by applying different methods of analysis and using different series with the same expected universality class, provides a more reliable error estimate. From this point of view, the conductivity series results cannot altogether rule out the AO conjecture in two dimensions; however, the overall central estimate would be consistent with the estimate from the resistivity series quoted above and would be substantially higher than the value given by the AO conjecture.

This work was carried out in part during the tenure, by one of us (JWE), of a Senior Visiting Fellowship at the Centre for Chemical Physics, University of Western Ontario. The work of two of us (KD'B and TL) is supported, in part, by the Natural Sciences and Engineering Research Council of Canada.

Appendix

Table A1.

	Triangular lattice: bulk	
	Resistive susceptibility	Conductive susceptibility
0	0	0
1	6	6
2	60	15
3	386	46
4	2038	132.1
5	9616	376.1
6	42020.36363636363636363636363636	1079.232034632034632034632034632
7	172537.5454545454545454545454545	3097.891466325212455243414995726
8	682760.9237782821427531580195191	8913.576026693624390830915901259
9	2604618.536239649465759358785352	25697.17163780721725892084084341
10	9658838.965504983532940507581116	73965.88022176357855418025966403
11	35212529.24823491882901262053011	213942.7098099921827428368880858
12	125117538.3739428993751897873498	615702.3384520455138568688337553
13	440267268.7225589720042506475329	1780763.077500282509726594390051
14	1523838898.324470495546761050699	5141398.351903988871171533488327

Table A2.

	Triangular lattice: surface	
	Resistive susceptibility	Conductive susceptibility
0	0	0
1	4	4
2	32	8
3	184	22
4	893.8333333333333333333333333333	57.73333333333333333333333333333
5	3901.25	151.2809523809523809523809523810
6	16157.49848484848484848484848484	409.6066711066711066711066711067

Table A2. (Continued)

	Triangular lattice: surface	
	Resistive susceptibility	Conductive susceptibility
7	63096.90887445887445887445887446	1117.401425939042038113245543589
8	238973.0389882829884965040297592	3076.286933361808500140662332822
9	880175.9254070384179629187118673	8562.044930924548299423933993926
10	3149620.603810431263888861371444	23793.50179641013387971424391210
11	11151999.68666885636400760457319	66886.12717415049956357249996780
12	38573440.17883258530663309608892	187495.9732561720638045301537426
13	132029098.9914399161630891829571	527465.3964272209796953087694860
14	447702023.9650501892953094150562	1494566.882772229360552919264508

Table A3.

	Square lattice: bulk	
	Resistive susceptibility	Conductive susceptibility
0	0	0
1	4	4
2	24	6
3	108	12
4	362	25
5	1220	48.41904761904761904761904761905
6	3398	97.61212121212121212121212121212
7	10386.13333333333333333333333333	192.8277056277056277056277056265
8	25433.06666666666666666666666667	387.3479810854957646886759729734
9	75001.80869565217391304347826088	771.9585204801657288489143569255
10	168121.3813664596273291925465838	1544.554340213251870670443482322
11	486607.8117411340412742937287152	3094.155951932606789242917412340
12	1022684.639188806236002817756934	6185.155887271728842777335016676
13	2952107.909031635276032187112141	12474.23927666382555020441959914
14	5732738.214363900600818482904895	24463.18720150911728715344320980
15	17524104.72652337966019542433074	51534.58265946635572741075862339
16	29042930.04867889425758802516257	93860.10439186937433740387542756
17	103369859.2807674543352739249618	217968.3193115221904419000308417
18	134495347.9019690498245042793788	353956.9185516508278514529307976

Table A4.

	Square lattice: surface	
	Resistive susceptibility	Conductive susceptibility
0	0	0
1	3	3
2	14	3.5
3	57	6.333333333333333333333333333333
4	177	12.25
5	563.5	22.36666666666666666666666666667
6	1469.666666666666666666666666667	42.00303030303030303030303030301

Table A4. (Continued)

	Square lattice: surface	
	Resistive susceptibility	Conductive susceptibility
7	4300.300000000000000000000000000	79.69220779220779220779220779224
8	10150.76666666666666666666666667	151.8638931110880507699126253628
9	28532.26304347826086956521739131	294.6392699547906026296616987360
10	63250.54037267080745341614906836	563.6889209333142911494685249773
11	171908.7048186736125025045081151	1106.329625622273414089468767414
12	368068.7944495805393094932871200	2130.673573466530507956321826655
13	980249.5676908389534065769601001	4237.264057964399432799000878873
14	1992822.804206078526220020477726	8021.397968346614336131314696170
15	5485231.823551368319265454469427	16697.10794780763498331853057569
16	10037269.37607132552004803065356	29803.72576195096903379881826224
17	30084782.33030289753045099570591	66716.37808940703110515727710209
18	48798807.76957103239964007227442	111889.7151034334812659355898325

References

[1] Fisch R and Harris A B 1978 Phys. Rev. B 18 416-20
[2] Essam J W and Bhatti F M 1985 J. Phys. A: Math. Gen. 18 3577-84
[3] Bhatti F M and Essam J W 1988 Disc. Appl. Math. 19 85-112
[4] Baker G A and Hunter D L 1973 Phys. Rev. B 7 3373-92
[5] Adler J, Meir Y, Aharony A, Harris A B and Klein L 1990 J. Stat. Phys. 58 511-38
[6] Adler J, Moshe M and Privman V 1982 Phys. Rev. B 26 1411-15
[7] Alexander S and Orbach R 1982 J. Physique Lett. 43 L625-31
[8] den Nijs M P M 1979 J. Phys. A: Math. Gen. 12 1857-68
[9] Adler J 1985 J. Phys. A: Math. Gen. 18 307-14
[10] Herrmann H J and Stanley H E 1984 Phys. Rev. Lett. 531121
[11] Hong D C, Havlin S, Herrmann H J and Stanley H E 1984 Phys. Rev. B 30 4083-6
[12] Lobb C J and Frank D J 1984 Phys. Rev. B 30 4090-2
[13] Zabolitzky J G 1984 Phys. Rev. B 30 4077-9
[14] Normand J-M, Herrmann H J and Hajjar M 1988 J. Stat. Phys. 52 441-6
[15] Aharony A and Stauffer D 1984 Phys. Rev. Lett. 52 2368-70
[16] Cardy J L 1984 Nucl. Phys. B 240 514-32

