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Abstract. Low-density series expansions are obtained for random resistor networks. The
expansions are obtained on the square lattice to order 18 and on the triangular lattice to order
14. Bulk and surface expansions are given for both resistive and conductive susceptibilities.
The balance of the evidence obtained from analysing these series is in favour of the value
ζR = 1.32± 0.02 for the critical exponent of the resistance scale and supports the existence of
only a single such scale for bulk and surface susceptibilities. This value is in agreement with
earlier Monte Carlo work.

Previous series expansion work on two-dimensional random resistor networks was for bond
percolation on the square lattice. Fisch and Harris [1] obtained the low-density expansion of
the resistive and conductive susceptiblities to orderp10 and this was subsequently extended
to orderp16 by Essam and Bhatti [2]. The resistive susceptibility is defined by

χR(p) =
∑
r 6=0

R(r, p) (1)

where each lattice bond has probabilityp of being a unit conductor and 1− p of being an
insulator. R(r, p) is the expected resistance between some lattice site taken as the origin
and a site with position vectorr, given that both sites belong to the same finite cluster.
The conductive susceptibility,χC(p), is similarly defined with the resistance,R(r, p),
replaced by its reciprocal. Here we extend the square lattice results to orderp18 and
obtain a completely new expansion for the triangular lattice to orderp14. Expansions
are also obtained for the resistive and conductive susceptibilties,χR1(p) and χC1(p), of
the corresponding semi-infinite lattices when the origin is chosen to be a point in the
surface. The method used is described in [3] for the bulk and is easily extended to the
surface problem. The calculation, including the generation of the non-nodal graph list, was
completely automated and the number of terms obtained was limited only by availabilty of
computer power. The series coefficients are given in the appendix.

ReplacingR(r, p) by P(r, p), the probability of a conducting path tor, in (1) gives
the mean cluster size functionsS(p) and S1(p), which are the expected number of sites
connected to the origin in the bulk and semi-infinite lattices, respectively. On approaching
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the critical probablitypc, the bulk cluster size and resistive susceptibilities are normally
assumed to diverge with critical exponentsγ andγR with corresponding surface exponents
γ1 and γR1. The values ofpc are known for the two lattices considered:pc(square) = 1

2
and pc(triangular) = 2 sin(π/18). Normalizing the susceptibilities by dividing by the
corresponding mean size gives the resistance and conductance scales denoted byLR(p),
LC(p), LR1(p) andLC1(p). Thus the resistance scale is

 LR(p) ≡ χR(p)

S(p)
∼ (pc − p)−ζR (2)

which diverges with exponentζR = γR − γ . The conductance scale,LC(p), tends to zero
at the critical point and has negative exponentζC = γC − γ which is normally assumed to
have magnitudeζR [1], this being in agreement with our results below. We also find that
the scales for the surface problem have the same exponents as for the bulk properties. This
is to be expected since there can be no surface transition and the only scales which become
singular at the transition are those of the bulk (i.e. there is only one connectedness length
exponentν at an ‘ordinary’ transition). Assuming the above relations between the scale
exponents, we are able to obtain four separate estimates ofζR for each of the two lattices.

Bhatti and Essam [3] analysed their 16 termχR(p) series for the square lattice by the
methods of Baker and Hunter (BH) [4] and the M2 method of Adleret al [5, 6] and found
ζR = 1.26 ± 0.02 which supported the Alexander–Orbach (AO) conjecture [7]ζR = 1

21,
where 1 is the critical exponent for the scale of the cluster size distribution. (In two
dimensions1 = 91

36 [8] which gives ζR = 1.263 8̇8.) The large error in their estimate
ζC = −1.3 ± 0.1 reflected the relatively poor convergence of theχC series.

The result of den Nijs [8] thatγ = 2 7
18 is normally accepted as exact and when this

was first discovered there was an inconsistency with some series expansion estimates based
on DLog Pad́e approximants. This was resolved by Adleret al [6] who pointed out the
importance of allowing for corrections to scaling in the analysis of percolation series. Thus
the scaling form ofχR(p) is just the leading term in an asymptotic expansion:

χR(p) ∼= A(pc − p)−γR

(
1 +

∞∑
i=1

Bi(pc − p)1i

)
. (3)

The presence of such correction terms slows down the convergence of the usual DLog Padé
approximant technique and the BH and M2 methods combat this by first transforming the
expansion ofχR(p). This improves the accuracy of the leading exponentγR and the leading
correction exponent11 can often be estimated. The value obtained for11 may only be an
effective value since it can be strongly influenced by higher order corrections. If it were the
true value then Adler’s assumption [9] that its value is the same for the mean size and both
susceptibility series would be reasonable. Making this assumption she found, by reanalysing
the series of Fisch and Harris [1], thatζR = 1.31± 0.20 where the large tolerance arises by
allowing values of11 in the range 1.1–1.4.

The result of Essam and Bhatti [2] is in conflict with several accurate computer
simulations [10–13] which rejected the Alexander–Orbach conjecture. In particular,
Normandet al have estimatedζR using extensive Monte Carlo simulations of both bond
and site percolation on a special purpose computer [14]. In their initial analysis, they
estimate the leading order exponent from a log–log plot for both site and bond percolation.
Although the site and bond lines do not become parallel, as expected in the asymptotic
limit, Normandet al were able to assign upper and lower bounds, 1.28 > ζR > 1.31. These
bounds would exclude both the Alexander–Orbach conjecture and the alternative conjecture
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ζR = ν = 4
3 [15]. To improve the precision of their estimate, Normandet al also included a

non-analytic correction to the scaling term in the analysis and chose the value of the leading
exponent and correction exponent which appeared to give the best approach to the expected
asymptotic behaviour for both the bond and site percolation results. This led to an estimate
of ζR = 1.299± 0.002. In interpreting the increased precision of the estimate obtained in
this way, it must be remembered that universality of the correction to the scaling exponent
is insisted on; however, here again this exponent may be regarded as an effective exponent
both because higher order correction terms are not included and because the analysis is
effectively a nonlinear fit to four unknowns for each set of data.

Adler et al [5] considered thedividedseriesχR(p)÷χC(p) in the hope that the unknown
non-analytic corrections to scaling would be swamped by the induced analytic corrections.
(The divided seriesA(p) ÷ B(p) is the series having coefficients which are the ratios
of those in the expansions ofA(p) and B(p).) In this way they obtained values ofζR

ranging between 1.23 and 1.29. The other possiblity they considered was the presence of
logarithmic corrections. The choice of exponent for the logarithm which madeζC = −ζR

gaveζR = 1.31± 0.02.
In the analysis of our new data we have applied three different methods to each series,

the BH and M2 methods and also the method M1 described by Adleret al [5]. The last
method treats the leading exponent as an independent variable and determines the value
which minimizes the dispersion of the11 estimates. For each lattice and susceptiblity type
we have considered four different series. Bhatti and Essam originally analysedχR(p)/p

since the power expansion had no constant term. Here we find that introducing a constant
term by using 1+ χR(p) can make a significant difference to the critical exponent estimate
in some cases. In particular the BH estimate ofγR − γ changes from 1.27± 0.05, which
agreed with the AO conjecture in [3], to 1.31± 0.04 which is in line with the Monte Carlo
estimates. In both cases the exact value ofγ [8] (γ1 [16]) is subtracted from the estimate
of γR (γR1). We have also used the series for the derivative and the ‘divided series’ defined
above, the latter gives gives a direct estimate ofζR. The results are listed in tables 1–4.

Although all three methods for a given expansion normally give estimates of11 which
are consistent with one another, it can be seen that there is a wide variation in the value of

Table 1. Estimates ofζR from bulk resistive susceptibility series.

Square Triangular

γR − γ 11 γR − γ 11

M2 1.31±0.02 1.75±0.01 1.35±0.02 1.6±0.1
1 + χR M1 1.32±0.01 2.1±0.1 1.35±0.01 1.6±0.2

BH 1.31±0.04 1.7±0.1 1.30±0.05 1.2±0.5

M2 1.31±0.02 0.9±0.1 1.29±0.03 1±0.2
χR/p M1 1.30±0.03 0.9±0.3 1.31±0.05 0.6±0.4

BH 1.27±0.05 1.3±0.2 1.29±0.04 1.2±0.4

M2 1.31±0.01 1.7±0.2 1.34±0.02 1.5±0.2
dχR/dp M1 1.32±0.01 2.4±0.7 1.35±0.02 1.8±0.2

BH 1.32±0.02 1.7±0.1 1.32±0.05 1.3±0.1

M2 1.27±0.05 1.1±0.1 1.33±0.01 0.7±0.1
χR ÷ S M1 1.3±0.1 1.0±0.5 1.32±0.01 0.75±0.10

BH 1.34±0.13 0.68±0.01 1.32±0.10 0.7±0.1
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Table 2. Estimates ofζR from surface resistive susceptibility series.

Square Triangular

γR1 − γ1 11 γR1 − γ1 11

M2 1.26±0.01 1.9±0.2 1.315±0.005 1.74±0.01
1 + χR1 M1 1.27±0.02 † 1.32±0.01 2.0±0.2

BH 1.28±0.02 * 1.34±0.05 1.6±0.1

M2 1.24±0.18 1.7±1.3 1.29±0.02 1.0±0.2
χR1/p M1 1.26±0.03 1.1±0.1 1.29±0.02 1.0±0.2

BH 1.29±0.05 1.1±0.1 1.27±0.08 1.0±0.3

M2 1.27±0.01 2.4±0.1 1.31±0.01 1.62±0.02
dχR1/dp M1 1.265±0.005 2.4±0.4 1.31±0.01 1.65±0.07

BH 1.28±0.02 2.6±0.2 1.33±0.03 1.7±0.2

M2 1.3±0.1 0.7±0.3 1.30±0.02 0.9±0.1
χR1 ÷ S1 M1 ‡ ‡ 1.33±0.02 0.8±0.1

BH 1.3±0.1 0.7±0.1 1.30±0.06 0.68±0.03

Table 3. Estimates ofζR from bulk conductive susceptibility series.

Square Triangular

γ − γC 11 γ − γC 11

M2 1.37±0.02 2.2±0.3 1.36±0.02 1.5±0.1
1 + χC M1 1.38±0.01 † 1.353±0.004 2.1±0.1

BH 1.33±0.07 * 1.29±0.06 *

M2 1.37±0.08 1.5±0.5 1.36±0.05 1.8±0.7
χC/p M1 ‡ ‡ 1.34±0.15 0.6±0.3

BH 1.31±0.09 * 1.33±0.08 *

M2 1.37±0.08 1.5±0.5 1.37±0.06 2.0±1.0
dχC/dp M1 1.43±0.04 † 1.41±0.03 †

BH 1.31±0.09 * 1.31±0.03 *

M2 1.27±0.02 1.4±0.1 1.27±0.01 1.6±0.1
χC ÷ S M1 1.27±0.01 1.4±0.1 1.25±0.01 1.6±0.3

BH 1.24±0.03 1.6±0.5 1.25±0.02 1.7±0.5

11 from series to series. In most cases this exponent either has a value close to 1 (analytic
correction) or close to 1.7. A notable exception to this is for the divided series of the
resistive susceptiblity where11 < 1. We therefore suppose that our results only estimate
an effective correction to scaling.

In the tables an asterisk by the Baker–Hunter estimate means that no satisfactory estimate
of 11 could be obtained due to the widespread appearance of defective approximants. A
dagger in an M2 row indicates that the estimate was based on the position of a discontinuity
in the11 againstγ curve which makes the assignment of a precise value to11 impossible.
Such discontinuities occur naturally in test series and the evidence from such series is that
the correct value ofγ is indicated. A double dagger in an M2 row indicates that there
was a continuous variation ofγ with 11 with no obvious converged region so that neither
exponent is estimated.

According to universality and scaling, all of the leading exponent estimates in the tables
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Table 4. Estimates ofζR from surface conductive susceptibility series.

Square Triangular

γ1 − γC1 11 γ1 − γC1 11

M2 1.40±0.01 1.7±0.2 1.39±0.02 1.41±0.02
1 + χC1 M1 1.38±0.01 † 1.382±0.002 1.7±0.1

BH * * 1.32±0.06 *

M2 1.388±0.005 2.0±1.0 1.368±0.003 1.55±0.05
χC1/p M1 1.39±0.01 † 1.378±0.01 1.3±0.2

BH * * 1.29±0.06 *

M2 1.4±0.1 2.3±0.7 1.37±0.04 0.1±0.4
dχC1/dp M1 ‡ ‡ ‡ ‡

BH * * 1.34±0.05 *

M2 1.24±0.02 1.7±0.1 1.25±0.01 1.75±0.05
χC1 ÷ S1 M1 1.25±0.01 1.6±0.1 1.24±0.01 1.9±0.2

BH 1.23±0.03 1.8±0.2 1.245±0.015 1.7±1.0

should be the same and equal toζR. The bulk resistive susceptibility estimates for both the
square and triangular lattices (table 1) are consistent with 1.32 ± 0.02 in agreement with
universality and with the Monte Carlo estimates referred to above. This result also covers the
surface resistive susceptibility of the triangular lattice (table 2) in agreement with there being
a single resistive scaling length for bulk and surface properties. However, the corresponding
results for the square lattice are in better agreement with the AO conjecture (but violating
universality) and there are in fact some very well converged results which support this
hypothesis. However, assuming universality, the balance of the evidence favours the higher
Monte Carlo result.

It is possible torefine the consistency of the estimates somewhat by insisting that certain
conditions which are true in the asymptotic limit be met. For example, we may insist that
both the leading exponent and the coefficient of the leading order term are the same when
obtained from bothχR/p and 1+ χR. If the estimates of coefficient against exponent
obtained from each Padé approximant in the Baker–Hunter analysis for the two series
are plotted on the same graph the crossing point provides an estimate which satisfies the
condition. The difficulty with such approaches is similar to the difficulty with insisting on
the universality of the correction to the scaling exponent, as was done in some of the earlier
studies described above; that is, the coefficient has to be regarded as only an effective value
for any analysis based on a finite number of terms. Consequently, any increased precision
in the estimates obtained for a given pair of series may be an artefact of the condition
imposed. It is therefore preferable to consider the full range of the central estimates of the
exponent obtained for the various series and methods of analysis shown in the table and to
take the variation in these central estimates as a reasonable indicator of the accuracy of the
results.

Turning now to the conductive susceptibility, we notice a marked deterioration in the
quality of the data. In particular, it is very often impossible to give an effective correction to
the scaling exponent which suggests that our assumed form (3) is not a good representation
of the conductive susceptibility functions. The resulting larger error bars attached to these
exponents usually allow consistency with the scaling hypothesisγR − γ = γ − γC [4]
although there are some well converged exceptions. In particular, if one wanted to make
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a case for believing the AO conjecture then the data forχC ÷ S and χC1 ÷ S1 would be
excellent ammunition. However, again, our data suggest that the spread in the central
estimates obtained by applying different methods of analysis and using different series with
the same expected universality class, provides a more reliable error estimate. From this
point of view, the conductivity series results cannot altogether rule out the AO conjecture in
two dimensions; however, the overall central estimate would be consistent with the estimate
from the resistivity series quoted above and would be substantially higher than the value
given by the AO conjecture.

This work was carried out in part during the tenure, by one of us (JWE), of a Senior Visiting
Fellowship at the Centre for Chemical Physics, University of Western Ontario. The work
of two of us (KD’B and TL) is supported, in part, by the Natural Sciences and Engineering
Research Council of Canada.

Appendix

Table A1.

Triangular lattice: bulk

Resistive susceptibility Conductive susceptibility

0 0 0
1 6 6
2 60 15
3 386 46
4 2038 132.1
5 9616 376.1
6 42 020.363 636 363 636 363 636 363 636 36 1079.232 034 632 034 632 034 632 034 632
7 172 537.545 454 545 454 545 454 545 454 5 3097.891 466 325 212 455 243 414 995 726
8 682 760.923 778 282 142 753 158 019 519 1 8913.576 026 693 624 390 830 915 901 259
9 2 604 618.536 239 649 465 759 358 785 352 25 697.171 637 807 217 258 920 840 843 41

10 9 658 838.965 504 983 532 940 507 581 116 73 965.880 221 763 578 554 180 259 664 03
11 35 212 529.248 234 918 829 012 620 530 11 213 942.709 809 992 182 742 836 888 085 8
12 125 117 538.373 942 899 375 189 787 349 8 615 702.338 452 045 513 856 868 833 755 3
13 440 267 268.722 558 972 004 250 647 532 9 1 780 763.077 500 282 509 726 594 390 051
14 1 523 838 898.324 470 495 546 761 050 699 5 141 398.351 903 988 871 171 533 488 327

Table A2.

Triangular lattice: surface

Resistive susceptibility Conductive susceptibility

0 0 0
1 4 4
2 32 8
3 184 22
4 893.833 333 333 333 333 333 333 333 333 3 57.733 333 333 333 333 333 333 333 333 33
5 3901.25 151.280 952 380 952 380 952 380 952 381 0
6 16 157.498 484 848 484 848 484 848 484 84 409.606 671 106 671 106 671 106 671 106 7
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Table A2. (Continued)

Triangular lattice: surface

Resistive susceptibility Conductive susceptibility

7 63 096.908 874 458 874 458 874 458 874 46 1117.401 425 939 042 038 113 245 543 589
8 238 973.038 988 282 988 496 504 029 759 2 3076.286 933 361 808 500 140 662 332 822
9 880 175.925 407 038 417 962 918 711 867 3 8562.044 930 924 548 299 423 933 993 926

10 3 149 620.603 810 431 263 888 861 371 444 23 793.501 796 410 133 879 714 243 912 10
11 11 151 999.686 668 856 364 007 604 573 19 66 886.127 174 150 499 563 572 499 967 80
12 38 573 440.178 832 585 306 633 096 088 92 187 495.973 256 172 063 804 530 153 742 6
13 132 029 098.991 439 916 163 089 182 957 1 527 465.396 427 220 979 695 308 769 486 0
14 447 702 023.965 050 189 295 309 415 056 2 1 494 566.882 772 229 360 552 919 264 508

Table A3.

Square lattice: bulk

Resistive susceptibility Conductive susceptibility

0 0 0
1 4 4
2 24 6
3 108 12
4 362 25
5 1220 48.419 047 619 047 619 047 619 047 619 05
6 3398 97.612 121 212 121 212 121 212 121 212 12
7 10 386.133 333 333 333 333 333 333 333 33 192.827 705 627 705 627 705 627 705 626 5
8 25 433.066 666 666 666 666 666 666 666 67 387.347 981 085 495 764 688 675 972 973 4
9 75 001.808 695 652 173 913 043 478 260 88 771.958 520 480 165 728 848 914 356 925 5

10 168 121.381 366 459 627 329 192 546 583 8 1544.554 340 213 251 870 670 443 482 322
11 486 607.811 741 134 041 274 293 728 715 2 3094.155 951 932 606 789 242 917 412 340
12 1 022 684.639 188 806 236 002 817 756 934 6185.155 887 271 728 842 777 335 016 676
13 2 952 107.909 031 635 276 032 187 112 141 12 474.239 276 663 825 550 204 419 599 14
14 5 732 738.214 363 900 600 818 482 904 895 24 463.187 201 509 117 287 153 443 209 80
15 17 524 104.726 523 379 660 195 424 330 74 51 534.582 659 466 355 727 410 758 623 39
16 29 042 930.048 678 894 257 588 025 162 57 93 860.104 391 869 374 337 403 875 427 56
17 103 369 859.280 767 454 335 273 924 961 8 217 968.319 311 522 190 441 900 030 841 7
18 134 495 347.901 969 049 824 504 279 378 8 353 956.918 551 650 827 851 452 930 797 6

Table A4.

Square lattice: surface

Resistive susceptibility Conductive susceptibility

0 0 0
1 3 3
2 14 3.5
3 57 6.333 333 333 333 333 333 333 333 333 333
4 177 12.25
5 563.5 22.366 666 666 666 666 666 666 666 666 67
6 1469.666 666 666 666 666 666 666 666 667 42.003 030 303 030 303 030 303 030 303 01
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Table A4. (Continued)

Square lattice: surface

Resistive susceptibility Conductive susceptibility

7 4300.300 000 000 000 000 000 000 000 000 79.692 207 792 207 792 207 792 207 792 24
8 10 150.766 666 666 666 666 666 666 666 67 151.863 893 111 088 050 769 912 625 362 8
9 28 532.263 043 478 260 869 565 217 391 31 294.639 269 954 790 602 629 661 698 736 0

10 63 250.540 372 670 807 453 416 149 068 36 563.688 920 933 314 291 149 468 524 977 3
11 171 908.704 818 673 612 502 504 508 115 1 1106.329 625 622 273 414 089 468 767 414
12 368 068.794 449 580 539 309 493 287 120 0 2130.673 573 466 530 507 956 321 826 655
13 980 249.567 690 838 953 406 576 960 100 1 4237.264 057 964 399 432 799 000 878 873
14 1 992 822.804 206 078 526 220 020 477 726 8021.397 968 346 614 336 131 314 696 170
15 5 485 231.823 551 368 319 265 454 469 427 16 697.107 947 807 634 983 318 530 575 69
16 10 037 269.376 071 325 520 048 030 653 56 29 803.725 761 950 969 033 798 818 262 24
17 30 084 782.330 302 897 530 450 995 705 91 66 716.378 089 407 031 105 157 277 102 09
18 48 798 807.769 571 032 399 640 072 274 42 111 889.715 103 433 481 265 935 589 832 5
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